3D Facial Expression Reconstruction using Cascaded Regression

نویسندگان

  • Fanzi Wu
  • Songnan Li
  • Tianhao Zhao
  • King Ngi Ngan
چکیده

This paper proposes a novel model fitting algorithm for 3D facial expression reconstruction from a single image. Face expression reconstruction from a single image is a challenging task in computer vision. Most state-of-the-art methods fit the input image to a 3D Morphable Model (3DMM). These methods need to solve a stochastic problem and cannot deal with expression and pose variations. To solve this problem, we adopt a 3D face expression model and use a combined feature which is robust to scale, rotation and different lighting conditions. The proposed method applies a cascaded regression framework to estimate parameters for the 3DMM. 2D landmarks are detected and used to initialize the 3D shape and mapping matrices. In each iteration, residues between the current 3DMM parameters and the ground truth are estimated and then used to update the 3D shapes. The mapping matrices are also calculated based on the updated shapes and 2D landmarks. HOG features of the local patches and displacements between 3D landmark projections and 2D landmarks are exploited. Compared with existing methods, the proposed method is robust to expression and pose changes and can reconstruct higher fidelity 3D face shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition

Face alignment and 3D face reconstruction are traditionally accomplished as separated tasks. By exploring the strong correlation between 2D landmarks and 3D shapes, in contrast, we propose a joint face alignment and 3D face reconstruction method to simultaneously solve these two problems for 2D face images of arbitrary poses and expressions. This method, based on a summation model of 3D face sh...

متن کامل

Reconstruction of 3D Human Facial Images Using Partial Differential Equations

One of the challenging problems in geometric modeling and computer graphics is the construction of realistic human facial geometry. Such geometry are essential for a wide range of applications, such as 3D face recognition, virtual reality applications, facial expression simulation and computer based plastic surgery application. This paper addresses a method for the construction of 3D geometry o...

متن کامل

Pose-Robust 3D Facial Landmark Estimation from a Single 2D Image

An algorithm is presented that estimates 3D facial landmark coordinates and occlusion state from a single 2D image. Unlike previous approaches, we divide the 3D cascaded shape regression problem into a set of viewpoint domains, which helps avoid problems in the optimization, such as local minima at test time, and averaging conflicting gradient directions in the domain maps during training. Thes...

متن کامل

Dense 3D face alignment from 2D video for real-time use

To enable real-time, person-independent 3D registration from 2D video, we developed a 3D cascade regression approach in which facial landmarks remain invariant across pose over a range of approximately 60 degrees. From a single 2D image of a person’s face, a dense 3D shape is registered in real time for each frame. The algorithm utilizes a fast cascade regression framework trained on high-resol...

متن کامل

Automated Restyling of Human Portrait Based on Facial Expression Recognition and 3D Reconstruction

This project demonstrated an innovative automatic restyling system that turns a plane human portrait to one with effects that correspond to his/her facial expression. By training recognition models using convolutional neural network(CNN) and a modified classification algorithm, the system is able to detect emotion of the person in a picture. Based on the emotion, the system modifies the photo i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.03491  شماره 

صفحات  -

تاریخ انتشار 2017